Tuesday 26 December 2017

Moving average lowess


mike, najpierw zainstaluj R, jeśli jeszcze nie masz, uruchom R i zainstaluj pakiet TeachingDemos dokładnie tak, jak zależy od systemu, załaduj pakiet z biblioteką TeachingDemos, a następnie wpisz, aby wyświetlić stronę pomocy, aby zobaczyć, jak to uruchomić, możesz przewinąć do na dole gdzie znajduje się przykład, skopiuj i wklej ten kod do wiersza polecenia Rs, aby zobaczyć przykłady, a następnie uruchomić własne dane, aby dalej zbadać Greg Snow 23 marca 12 w 17 15. Oto prosta, ale szczegółowa odpowiedź. Linia liniowa model pasuje do wszystkich punktów danych Model ten może być zamówiony w kolejnym znaczeniu liniowym lub wielomianowym w celu uwzględnienia krzywizny, lub sprężyn, aby uwzględnić różne regiony mające inny model rządzący. A LOESS fit to lokalnie poruszająca się ważona regresja oparte na oryginalnych punktach danych Co oznacza, że ​​LOESS dopasowuje oryginalne wartości X i Y oraz zestaw wartości X wyjściowych, dla których obliczane są nowe wartości Y, zwykle te same wartości X są używane zarówno w przypadku, jak i często X wartości ar e dla dopasowanych par XY ze względu na wymaganą wymaganą liczbę obliczeń. Dla każdej wartości wyjściowej X, część danych wejściowych jest używana do obliczania dopasowania Część danych, zazwyczaj 25 do 100, ale typowo 33 lub 50, jest lokalna, co oznacza, że ​​jest to część pierwotnych danych najbliżej każdej konkretnej wartości wyjściowej X Jest to ruchome dopasowanie, ponieważ każda wartość wyjściowa X wymaga innego podzbioru oryginalnych danych o różnych gramatach, patrz następny akapit. Ten podzbiór punktów danych wejściowych jest użyto do przeprowadzenia ważonej regresji, przy czym punkty najbliższe wyjściowej wartości X podano większą wagę Jest to regresja zazwyczaj pierwszego rzędu drugiego rzędu lub wyższa, ale wymaga większej mocy obliczeniowej Wartość Y tej regresji ważonej obliczona na wyjściu X jest używana jako wartość modelu Y dla tej wartości X. Regresja jest ponownie obliczana przy każdej wartości wyjściowej X w celu uzyskania pełnego zestawu wartości Y. Odpowiedź 21 lutego 21 w 21 08.LOESS jest jedną z wielu nowoczesnych metod modelowania, uild na metodach klasycznych, takich jak liniowa i nieliniowa regresja najmniejszych kwadratów Nowoczesne metody regresji mają na celu rozwiązanie sytuacji, w których klasyczne procedury nie działają poprawnie lub nie mogą być skutecznie stosowane bez nadmiernego wysiłku LOESS łączy w sobie wiele prostoty regresji liniowej najmniejszych kwadratów z elastyczność regresji nieliniowej Czyni to poprzez dopasowanie prostych modeli do zlokalizowanych podzbiorów danych w celu zbudowania funkcji, która opisuje deterministyczną część zmiany w punkcie danych punktem faktycznym W rzeczywistości jednym z głównych atrakcji tej metody jest to, analityk danych nie musi określać globalnej funkcji jakiejkolwiek postaci, aby dopasować model do danych, tylko w celu dopasowania ich do segmentów danych. Skompromitowanie tych cech jest zwiększonym obliczaniem Ponieważ jest tak intensywnie obliczany, LOESS miałby praktycznie niemożliwe do użycia w epoce, w której rozwijano regresję najmniejszych kwadratów Większość innych nowoczesnych metod modelowania procesów są podobne do LOESS w tym zakresie Metody te zostały świadomie zaprojektowane tak, aby wykorzystywać naszą obecną wydajność obliczeniową do możliwie najszerszej korzyści, aby osiągnąć cele, których nie można łatwo osiągnąć tradycyjnymi metodami. Definicja LOESS Model. LOESS, pierwotnie zaproponowana przez Cleveland 1979 i dalej rozwijana przez Cleveland i Devlin 1988 konkretnie oznacza metodę, która jest nieco bardziej opisowo znana jako lokalna ważona regresja wielomianowa W każdym punkcie zbioru danych wielomian niski jest dopasowany do podzbioru danych, z wyjaśnieniem zmiennych wartości w pobliżu punktu, którego odpowiedź jest szacowany Wielomian jest dopasowany do ważenia najmniejszych kwadratów, co daje większą wagę do punktów w pobliżu punktu, którego odpowiedź jest szacowana, a mniejsza masa na punkty dalej Wartość wartości funkcji regresji dla punktu jest otrzymywana przez ocenę wielomianu lokalnego za pomocą wartości zmiennych objaśniających dla tego punktu danych Pasmo LOESS jest kompletne po regresji wartości funkcji zostały obliczone dla każdego z n punktów danych Wiele szczegółów tej metody, takich jak stopień wielomianu i ciężaru, są elastyczne Zakres wyborów każdej części metody i typowych ustawień domyślnych jest krótko omówiony next. Localized Subsets of Data. Podstawy danych wykorzystywanych do każdego ważonego najmniejszych kwadratów dopasowanych do LOESS są określane przez najbliższy algorytm sąsiadów Wprowadzone przez użytkownika dane do procedury zwanej parametrem szerokości pasma lub wygładzania określają, jaka ilość danych jest używana Dopasuj każdy wielomian lokalny Parametr wygładzania, q, jest liczbą pomiędzy d 1 n a 1, a d oznacza stopień lokomocyjnego. Wielkość q jest proporcją danych użytych w każdym dopasowaniu. Podzbiór danych użytych w każdej ważonej dopasowanie do najmniejszych kwadratów składa się z nq zaokrąglone do następnych największych punktów całkowitych, których wartości zmiennych objaśniających są najbliższe punktowi, w którym szacowana jest odpowiedź. q nazywa się parametrem wygładzania, ponieważ kontroluje elastyczność funkcji regresji LOESS Duże wartości q wytwarzają najsilniejsze funkcje, które najłatwiej poruszają się w odpowiedzi na wahania w danych Mniejsze q jest tym, że im bliżej funkcja regresji będzie zgodna z danymi Użycie zbyt małej wartości parametru wygładzania nie jest pożądane, ponieważ funkcja regresji ostatecznie zacznie przechwytywać błąd losowy w danych Przydatne wartości parametru wygładzania zazwyczaj leżą w przedziale od 0 do 25 dla większości aplikacji LOESS . Wielomian lokalny lokalne wielomiany dopasowane do każdego podzbioru danych prawie zawsze mają pierwszy lub drugi stopień, tj. Lokalnie liniowy w odcinku prostym lub lokalnie kwadratowy. Korzystając z wielomianów o zerowej stopie LOESS do średniej ważonej średniej ruchomej Taki prosty model lokalny może działać dobrze w pewnych sytuacjach, ale nie zawsze może przybliżyć właściwie dobraną podstawową funkcję Polynę wyższego stopnia omole funkcjonowałyby teoretycznie, ale modele wydajności, które nie są w duchu LOESS LOESS oparte są na pomysłach, że każda funkcja może być dobrze przybliżona w małej dzielnicy przez wielomian niskiego rzędu i że proste modele mogą być dopasowane do danych łatwo Wielomiany wielodemianiczne miałyby tendencję do nadmiernego wyrównywania danych w każdym podgrupie i są niestabilne liczbowo, co utrudnia dokładne obliczenia. Jak wspomniano powyżej, funkcja wagi daje największą wagę do punktów danych najbliższych punktowi estymacji i najmniejszej wagi do punkty danych najbardziej oddalone Użycie wagi opiera się na założeniu, że punkty bliskie siebie w objaśniającej przestrzeni zmiennej są bardziej prawdopodobne, że są ze sobą powiązane w prosty sposób niż punkty, które są dalekie od siebie Zgodnie z tą logiką punkty które prawdopodobnie będą zgodne z lokalnym modelem najlepiej wpływają na lokalny parametr modelu, szacuje się, że większość Punktów, które są mniej prawdopodobne, że są zgodne z lokalnym modelem, mają mniejszy wpływ na oszacowanie parametrów modelu lokalnego. Następna funkcja wagi stosowana w przypadku LOESS to funkcja wagi trójkątnej, wx pozostawiła 1 - x 3 mbox. Moving średnie i wykładnicze modele wygładzania. Jest to pierwszy krok w wychodzeniu poza średnie modele, przypadkowe modele walk, i modeli liniowych modeli, nieuzasadnionej wzorców i trendów można ekstrapolować za pomocą modelu ruchomo-średniego lub wygładzającego Podstawowym założeniem za modelami uśredniania i wygładzania jest to, że szereg czasowy jest lokalnie stacjonarny i powoli zmienia się średnio. W związku z tym ruszamy lokalną średnią do oszacować bieżącą wartość średniej, a następnie wykorzystać ją jako prognozę na najbliższą przyszłość To można uznać za kompromis między średnim modelem a modelem losowego chodzenia bez drift Ta sama strategia może być użyta do oszacowania i ekstrapolacji tendencja lokalna Średnia ruchoma jest często nazywana wyrafinowaną wersją oryginalnej serii, ponieważ uśrednianie krótkotrwałe ma wpływ wygładzania wybojów w oryginalnej serii. e wygładzania szerokości średniej ruchomej, możemy mieć nadzieję, że uderzymy w pewną optymalną równowagę między osiągami średnich i przypadkowych modeli chodu Najprostszym modelem uśredniania jest średniotutowa średnia ruchoma równa. Prognoza dla wartość Y w czasie t1, która jest wykonana w czasie t równa się zwykłej średniej z ostatnich obserwacji m. Tutaj i gdzie indziej będę używać symbolu Y-hat do prognozowania serii czasowej Y dokonanej najwcześniej w poprzednim terminie przez dany model Średnia ta jest skoncentrowana w okresie tm 1 2, co oznacza, że ​​oszacowanie lokalna średnia będzie miała tendencję do opóźnienia w stosunku do prawdziwej wartości średniej lokalnej o około m 1 2 okresy Tak więc mówimy średni wiek danych w prostej średniej ruchomej wynosi m 1 2 w stosunku do okresu, na który obliczana jest prognoza jest to kwota czasu, w jakim prognozy będą się spóźniały za punktami zwrotnymi w danych Na przykład, jeśli uśrednimy ostatnie 5 wartości, prognozy będą wynosić około 3 okresy późne w odpowiedzi na punkty zwrotne Zauważ, że jeśli m 1, prosty średni ruchowy model SMA jest równoważny modelowi losowego spaceru bez wzrostu Jeśli m jest bardzo duże porównywalne z długością okresu szacowania, model SMA jest równoważny modelowi średniemu Tak jak w przypadku dowolnego parametru modelu prognozowania, zwyczajowo dostosować wartość ki n aby uzyskać najlepsze dopasowanie do danych, tzn. najmniejsze błędy prognozy średnio. Oto przykład serii, która wydaje się wykazywać przypadkowe wahania wokół średnio zróżnicowanej średniej. Po pierwsze, spróbuj dopasować ją do losowego spaceru model, co odpowiada prostej średniej ruchomej 1 terminu. Model przypadkowego spaceru reaguje bardzo szybko na zmiany w serii, ale w ten sposób pobiera dużo hałasu w danych losowych wahań, jak również sygnału lokalnego średnia Jeśli weźmiemy pod uwagę prostą średnią ruchomą wynoszącą 5 terminów, otrzymamy gładszy zestaw prognoz. 5-letnia prosta średnia ruchoma daje w tym przypadku znacznie mniejsze błędy niż model losowego spaceru w tym przypadku Przeciętny wiek danych w tym prognoza wynosi 3 5 1 2, tak że ma ona tendencję do opóźnienia za punktami zwrotnymi o około trzy okresy Na przykład, spadek koniunktury wydaje się mieć miejsce w okresie 21, ale prognozy nie odwracają się do kilku okresów później. Notyczność, długoterminowe prognozy z mod SMA mod El jest poziomej prostej, podobnie jak w modelu random-walk. Model SMA zakłada więc, że nie ma tendencji do danych. Jednak prognozy z modelu random walk są po prostu równe ostatniej obserwowanej wartości, prognozy od model SMA jest równy średniej ważonej z ostatnich wartości. Obciążenia ufności obliczone przez Statgraphics w odniesieniu do długoterminowych prognoz dotyczących prostej średniej ruchomej nie są szersze w miarę wzrostu horyzontu prognozowego. To oczywiście nie jest poprawne Niestety, nie ma podstaw teorii statystycznej, która mówi nam, jak powinny być poszerzane przedziały ufności dla tego modelu Jednak nie jest zbyt trudno obliczyć empiryczne szacunki wartości granicznych ufności dla prognoz dłuższego horyzontu Na przykład można utworzyć arkusz kalkulacyjny, w którym model SMA byłby wykorzystywany do prognozowania 2 kroków do przodu, 3 kroków do przodu, itd. w ramach historycznej próbki danych Można następnie obliczyć próbkowe odchylenia standardowe błędów w każdej prognozie h orizon, a następnie skonstruuj interwały zaufania dla prognoz długoterminowych przez dodawanie i odejmowanie wielokrotności odpowiedniego odchylenia standardowego. Jeśli próbujemy 9-letnią prostą średnią ruchomej, otrzymamy jeszcze gładsze prognozy i bardziej opóźniamy efekt. Średni wiek to teraz 5 okresów 9 1 2 Jeśli weźmiemy 19-letnią średnią ruchliwą, średni wiek wzrasta do 10.Notice, że rzeczywiście prognozy są teraz w tyle za punktami zwrotnymi o około 10 okresów. Jaka ilość wygładzania jest najlepsza dla tej serii Oto tabela, w której porównano ich statystykę błędów, również zawierającą średnią 3-miesięczną. Model C, 5-letnia średnia ruchoma, daje najniższą wartość RMSE przez mały margines w średnim okresie 3-letnim i 9-dniowym, a ich inne statystyki są prawie identyczne Więc wśród modeli o bardzo podobnych statystykach błędów możemy wybrać, czy wolelibyśmy nieco lepszej odpowiedzi lub trochę bardziej płynną prognozę Powrót do początku strony. Brown s Simple Exponential Wygładzanie wykładniczo ważone średnia średniej ruchomej. Opisany powyżej prosty model średniej wielkości ruchu ma niepożądaną właściwość, która traktuje ostatnie obserwacje równomiernie i całkowicie ignoruje wszystkie poprzednie obserwacje Intuicyjnie, dane z przeszłości powinny być dyskontowane w sposób bardziej stopniowy - na przykład najnowsze obserwacje powinny trochę więcej niż druga ostatnia, a druga najnowsza powinna mieć trochę więcej wagi niż trzeci ostatni, i tak dalej Prosty wygładzający model SES osiąga to. Oznacza to, że wygładzanie stale zmienia liczbę pomiędzy 0 a 1 Jednym ze sposobów zapisania modelu jest zdefiniowanie serii L, która reprezentuje poziom bieżący tj. Lokalna średnia wartość serii, szacowana na podstawie danych do dnia dzisiejszego. Wartość L w czasie t jest obliczana rekurencyjnie od własnej poprzedniej wartości, jak ta. Tak więc bieżąca wygładzona wartość jest interpolacją między poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie kontroluje bliskość interpolowanej wartości najbardziej średnia prognoza Prognoza na następny okres jest po prostu aktualną wygładzoną wartością. W równym stopniu możemy wyrazić następną prognozę bezpośrednio w odniesieniu do poprzednich prognoz i wcześniejszych obserwacji, w każdej z następujących równoważnych wersji W pierwszej wersji prognoza jest interpolacją pomiędzy poprzednią prognozą a wcześniejszą obserwacją. W drugiej wersji następna prognoza uzyskuje się przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu w ułamkowej wartości. Jest to błąd popełniony w czasie t W trzecim projekcie prognoza jest wykładnicza ważona, tzn. zdyskontowana średnia ruchoma ze współczynnikiem dyskonta 1. Wersja interpolacyjna formuły prognozowania jest najprostszym rozwiązaniem, jeśli model jest stosowany w arkuszu kalkulacyjnym, który mieści się w jednej komórce i zawiera odwołania do komórek wskazujące na poprzednią prognozę, poprzednią obserwacja i komórka, w której zachowana jest wartość. Zwróć uwagę, że jeśli 1, model SES jest równoważny losowemu modelowi spacerowemu z hout growth Jeśli 0, model SES jest równoważny modelowi średnią, zakładając, że pierwsza wygładzona wartość jest równa średniej. Powrót na górę strony. Średni wiek danych w prognozie wygładzania wykładniczo-wykładnicza to 1 względny do okresu, w którym obliczana jest prognoza To nie powinno być oczywiste, ale można to łatwo wykazać przez ocenę nieskończonej serii W związku z tym prosta prognoza średniej ruchowej skłania się do punktów zwrotnych o około 1 okresy Przykładowo, gdy 0 5 opóźnienie to 2 okresy, gdy 0 2 opóźnienie wynosi 5 okresów, gdy 0 1 opóźnienie wynosi 10 okresów itp. W przypadku określonego wieku średniego tj. Kwoty opóźnienia, prosta prognoza SES wyrównania wykładniczego jest nieco lepsza od zwykłego ruchu średnia prognoza SMA, ponieważ w ostatniej obserwacji obserwuje się relatywnie większą wagę - co nieco odpowiada na zmiany zachodzące w niedawnej przeszłości Przykładowo model SMA z 9 terminami i model SES z 0 2 mają średni wiek z 5 dla da w swoich prognozach, ale model SES wiąże się z ostatnimi 3 wartościami niż model SMA, a jednocześnie nie zapominają o wartościach powyżej 9 okresów, jak pokazano na poniższej wykresie. Inna ważna przewaga model SES w modelu SMA polega na tym, że model SES wykorzystuje parametr wygładzania, który jest ciągle zmienny, dzięki czemu można z łatwością zoptymalizować przy użyciu algorytmu solver w celu zminimalizowania średniego kwadratu. wynosiła 0 2961. Średni wiek danych w tej prognozie wynosi 1 0 2961 3 4 okresów, co jest zbliżone do 6-letniej prostej średniej ruchomej. Długoterminowe prognozy z modelu SES są horyzontalna linia prosta, jak w modelu SMA i model losowego chodzenia bez wzrostu Jednak należy zauważyć, że przedziały ufności obliczane przez Statgraphics różnią się w rozsądny sposób i że są one znacznie węższe niż przedziały ufności dla rand om walk model Model SES zakłada, że ​​seria jest nieco bardziej przewidywalna niż model losowego spaceru. Model SES jest w rzeczywistości przypadkiem specjalnym modelu ARIMA, więc statystyczna teoria modeli ARIMA stanowi solidną podstawę do obliczania przedziałów ufności dla Model SES W szczególności model SES jest modelem ARIMA z odmienną różnicą, terminem MA 1, a nie określonym terminem znanym jako model ARIMA 0,1, bez stałego Współczynnik MA 1 w modelu ARIMA odpowiada ilość 1 - w modelu SES Przykładowo, jeśli pasujesz do modelu ARIMA 0,1,1 bez stałej wartości w analizowanych seriach, szacowany współczynnik MA 1 wyniósł 0 7029, czyli prawie o jeden minus 0 2961. Możliwe jest dodanie założenia niezerowej stałej tendencji liniowej do modelu SES W tym celu wystarczy podać model ARIMA z jedną różniczką różniczkową i termin MA 1 ze stałą, tj. Model ARIMA 0,1,1 ze stałymi prognozami długoterminowymi a następnie mają tendencję, która jest równa średniej tendencji obserwowanej w całym okresie szacowania Nie można tego zrobić w połączeniu z dostosowaniem sezonowym, ponieważ opcje sezonowej korekty są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stałą długą tendencja wykładnicza do prostego modelu wyrównania wykładniczego z sezonową korektą lub bez sezonu z zastosowaniem opcji dostosowania inflacji w procedurze prognozowania Odpowiednia stopa wzrostu inflacji w danym okresie może być oszacowana jako współczynnik nachylenia w modelu tendencji liniowej dopasowany do danych w w połączeniu z naturalną transformacją logarytmową lub może opierać się na innych, niezależnych informacjach dotyczących perspektyw wzrostu długoterminowego Powrót na górę strony. Brown s Linear czyli podwójne wyrównywanie wyrównania. Modele SMA i modele SES zakładają, że nie ma tendencji do jakiegokolwiek rodzaju w danych, które zwykle są OK lub przynajmniej nie-zbyt-kiepskie w przypadku prognoz jednostopniowych, gdy dane są stosunkowo noi sy i mogą być modyfikowane w celu uwzględnienia stałej tendencji liniowej, jak pokazano powyżej. Co z trendami krótkoterminowymi Jeśli seria wykazuje zmienną szybkość wzrostu lub cykliczny wzór, który wyróżnia się wyraźnie na tle hałasu, a jeśli istnieje potrzeba prognozowanie bardziej niż 1 okresu do przodu, a następnie oszacowanie lokalnej tendencji może być problem Prosty model wyrównywania wykładniczego może być uogólniony w celu uzyskania liniowego modelu wygładzania wykładniczego mierzącego lokalną estymację zarówno poziomu, jak i tendencji. Najprostszy trend zmieniający się w czasie model jest brązowym linearnym wykładnikiem wykładniczym, który wykorzystuje dwie różne wygładzone serie, które są skoncentrowane w różnych punktach czasu Formuła prognozowana oparta jest na ekstrapolacji linii przez dwa centra Wyrafinowaną wersją tego modelu, Holt s, jest omówione poniżej. Forma algorytmowa liniowego modelu wygładzania wykładanego przez Brown'a, podobnego do prostego modelu wygładzania wykładniczego, może być wyrażona w wielu różnych, ale formy kwantancyczne Standardowa forma tego modelu jest zwykle wyrażana w następujący sposób Niech S oznacza pojedynczo wygładzoną serię otrzymaną przez zastosowanie prostego wygładzania wykładniczego do serii Y Oznacza to, że wartość S w okresie t jest podana przez. Przypomnijmy, że w prostym wyrównaniu wykładniczym byłaby to prognoza dla Y w okresie t 1 Następnie niech S oznacza podwójnie wygładzoną serię otrzymaną przez zastosowanie prostego wyrównania wykładniczego przy użyciu tego samego do serii S. Na koniec prognoza dla Y tk dla dowolnego k 1, daje te plony e 1 0 tj. oszukiwać nieco i niech pierwsza prognoza będzie równa rzeczywistej pierwszej obserwacji, a y 2 Y 2 Y 1, po której generowane są prognozy przy użyciu powyższego równania To daje takie same dopasowane wartości jako wzór oparty na S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1 Ta wersja modelu jest używana na następnej stronie, która ilustruje kombinację wygładzania wykładniczego z dostosowaniem sezonowym. Holt s Linear Exponential Smoothing. Brown s Model LES oblicza lokalne szacunki poziomu i tendencji, wygładzając ostatnie dane, ale fakt, że robi to z pojedynczym parametrem wygładzania, ogranicza wzorce danych, które jest w stanie dopasować do poziomu i tendencji nie można zmieniać w niezależne modele Model LES Holt s rozwiązuje ten problem przez uwzględnienie dwóch stałych wygładzania, po jednym dla poziomu i jednego dla trendu W dowolnym momencie t, podobnie jak w modelu Browna, istnieje szacunkowy poziom L t na poziomie lokalnym i szacunek T t lokalnej tendencji Tutaj są one obliczane rekurencyjnie z wartości Y obserwowanej w czasie t oraz poprzednich szacunków poziomu i tendencji przez dwa równania, które stosują wyrównanie wykładnicze dla nich osobno. Jeżeli szacowany poziom i tendencja w czasie t-1 są odpowiednio L t 1 i T t 1, wówczas prognoza dla Y t, która została dokonana w czasie t-1, jest równa L t-1 T t-1 Gdy rzeczywista wartość jest zaobserwowana, zaktualizowane oszacowanie poziom jest obliczany rekurencyjnie przez interpolowanie pomiędzy Y t a jego prognozą, L t-1 T t-1, przy użyciu odważników i 1. Zmiana szacowanego poziomu, mianowicie L t L t 1 może być interpretowana jako hałaśliwy pomiar trend w czasie t Uaktualniony szacunek trendu oblicza się rekurencyjnie przez interpolację między L t L t 1 i poprzedni szacunek trendu T t-1 przy użyciu odważników i 1. Interpretacja stała wygładzania trendu jest analogiczna do stałej wygładzania poziomu Modele o małych wartościach zakładają, że tendencja zmienia się tylko bardzo powoli w czasie, a modele o większym założeniu, że zmienia się szybciej Model z dużą grupą uważa, że ​​dalekiej przyszłości jest bardzo niepewna, ponieważ błędy w oszacowaniu tendencji stają się bardzo ważne, gdy prognozuje się więcej niż jeden rok naprzód Powrót do początku strony. Stałe wygładzania i można je oszacować w zwykły sposób minimalizując średnie kwadratowe błędy prognoz 1-krotnego wyprzedzenia Kiedy to nastąpi w programie Statgraphics, szacunki szacuje się na 0 3048 i 0 008 Bardzo mała wartość oznacza, że ​​model zakłada bardzo niewielką zmianę tendencji z jednego okresu do następnego, więc w zasadzie ten model próbuje oszacować długoterminową tendencję Przez analogię do pojęcia średniego wieku danych używanych do estymowania t lokalny poziom serii, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej jest proporcjonalny do 1, chociaż nie jest do niego równy. W tym przypadku okazuje się, że wynosi on 1 0 006 125 To jest bardzo dokładna liczba ponieważ dokładność szacunkowa nie jest naprawdę 3 miejsc po przecinku, ale ma ten sam ogólny porządek wielkości jak wielkość próbki 100, więc model ten uśrednia się w odniesieniu do dość dużej liczby historii w szacowaniu tendencji Wykres prognozy poniżej pokazuje, że model LES szacuje nieco większą tendencję lokalną na końcu serii niż stała tendencja szacowana w modelu tendencji SES Również szacunkowa wartość jest niemal identyczna z wartością otrzymaną przez dopasowanie modelu SES z tendencją lub bez , więc jest to prawie ten sam model. Jest to wyglądające jak uzasadnione prognozy modelu, które ma być szacowaniem tendencji lokalnej Jeśli zauważysz tę fabułę, wygląda na to, że lokalny trend spadł w dół pod koniec seria Wh jak się zdarzyło Parametry tego modelu zostały oszacowane przez zminimalizowanie kwadratu błędu prognoz 1-krotnego wyprzedzenia, a nie dłuższych prognoz, w których to przypadku trend nie robi dużo różnicy Jeśli wszystko, co szukasz, to 1 - stop-ahead błędy, nie widzisz większego obrazu trendów w ciągu 10 lub 20 okresów Aby uzyskać ten model w zgodzie z naszą ekstrapolacją danych oczu, możemy ręcznie wyregulować stałą wygładzania trendu, używa krótszej linii odniesienia do szacowania tendencji Na przykład, jeśli zdecydujemy się na ustawienie 0 1, średni wiek danych wykorzystywanych do oszacowania tendencji lokalnej wynosi 10 okresów, co oznacza, że ​​uśrednimy tendencję w ciągu ostatnich 20 okresów Oto jak wygląda planowana fabuła, jeśli ustawimy 0 1, zachowując 0 3 To intuicyjnie rozsądne dla tej serii, chociaż prawdopodobne jest, że prawdopodobne jest, że ekstrapolacja tej tendencji nastąpi więcej niż 10 okresów w przyszłości. porównanie modelu f lub dwóch modeli pokazanych powyżej oraz trzech modeli SES Optymalna wartość modelu SES wynosi około 0 3, ale uzyskuje się podobne wyniki z nieco większą lub mniejszą czułością na reakcję przy wartości 0 5 i 0 2. Wyrównanie liniowe Holta z alfa 0 3048 i beta 0 008. B Wyrównanie liniowe Holta z alfa 0 3 i beta 0 1. C Zwykłe wyrównanie wykładnicze z alfa 0 5. D Zwykłe wyrównanie wykładnicze z alfa 0 3. E Proste wyrównanie wykładnicze z alfa 0 2 Statystyki są prawie identyczne, więc naprawdę nie możemy dokonać wyboru na podstawie jednoetapowych prognoz błędów w próbce danych Musimy zwrócić uwagę na inne rozważania Jeśli uważamy, że ma sens oprzeć obecny oszacowanie trendów na tym, co się stało w ciągu ostatnich 20 okresów, możemy stworzyć przypadek modelu LES z 0 3 i 0 1 Jeśli chcemy być agnostyczni na temat tego, czy istnieje tendencja lokalna, wówczas jeden z modeli SES mógłby łatwiej wyjaśnić, a także dać więcej middl e-of-the-road prognozy na najbliższe 5 lub 10 okresy Powrót na początek strony. Jakiego rodzaju tendencja-ekstrapolacja jest najlepsza w horyzontalnym lub liniowym Dane empiryczne sugerują, że jeśli dane zostały już skorygowane, jeśli jest to konieczne dla inflacji, to może być nierozsądne ekstrapolacja krótkoterminowych trendów liniowych bardzo daleko w przyszłość Trendy widoczne dziś mogą spowolnić w przyszłości ze względu na różne przyczyny, takie jak nieaktualność produktu, zwiększona konkurencja i cykliczne spowolnienie gospodarcze lub wzrost w przemyśle Z tego powodu prosty wykładniczy wygładzanie często wykonuje lepszą próbę poza próbą niż oczekiwano inaczej, pomimo jej naiwnej ekstrapolacji trendu horyzontalnego Często w praktyce często stosuje się modyfikacje trendu tłumiącego liniowego modelu wygładzania wykładniczego, aby wprowadzić w notatki konserwatyzmu tendencje tendencji tendencji tłumionej Model LES może być implementowany jako szczególny przypadek modelu ARIMA, w szczególności modelu 1,1,2 ARIMA. Można obliczyć przedziały ufności a długoterminowe prognozy wygenerowane przez wykładnicze modele wygładzania, biorąc pod uwagę je jako szczególne przypadki modeli ARIMA Należy uważać, aby nie wszystkie programy obliczały przedziały ufności dla tych modeli prawidłowo Szerokość przedziałów ufności zależy od iu błędu RMS modelu, ii typu wygładzanie proste lub liniowe iii wartość s stała wygładzania s oraz liczba przewidywanych okresów W ogóle odstępy czasowe rozciągają się szybciej, powiększając się w modelu SES i rozchodzą się znacznie szybciej, gdy liniowy, a nie prosty wygładzanie jest używane Ten temat został omówiony w dalszej części sekcji ARIMA notatek Powrót na początek strony.

No comments:

Post a Comment